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Abstract

The objective of.thisbstudy is to develop an approach
that would assign patients to aeromedical evacuation air-
craft and route each aircraft to a éingle CONUS airport.

The goal is to minimize total patient wait time.

A heuristic algorithm is developed which exploits the
structure of the problem. The first subpfoblem solved is
the assignmenc of aircraft to airports. This subproblem is
solved using integer programming and the results are input
into the second subproblem. The second subproblem is the
patient to aircraft assignment problem. This suﬁproblem
minimizes patient wait time and is solved using network f{low
programming. The two subproblemé are.linked into one algo-
rithm and solved.iteratively until termination criteria afe
met. , | |

The algorithm is tested on three data sets. The re-
sults indicate that the algorithm is an efficient method for
scheduling patients and routing aircraft, although

optimality is not goaranteed.

vii




PATIENT SCHEDULING AND AIRCRAFT ROUTING
FOR STRATEGIC AEROMEDICAL EVACUATION

1. INTRODUCTION

A critical task during periods of war is the
aeromédicél evacuation of injured soldiers from the war
zone. The morale of the trobps, and the morale of the
nation,vis influenced by tﬁe ability to get the wounded back
to the United States quickly. |

The policy of the Department of Defense is to move the
casualties by aircraft. The responsibility for the aero-
medical evacuation mission falls to the U.S. Air Force's Air

Mobility Command (AMC).

1.1 Background

Air Mobility Command is responsible for providing a
worldwide aeromedical evaéuation systém for the United
States Armed Forces (22:3). The system provides for airlift
within the continental U.S. (CONUS), between theaters of
operation, and within each theater. Within the theater of
operation, medical resources are distributed among the

services according to functional levels called echelons.




Higher echélons are identified by an increasing level

. of medical care for the wounded soldier. The first echelon
(1E) is located along the line of contact with tha enemy
.where only limited care is available. The wounded soldier
is moved by foot, gfound, orlair transportation to the
 second echelon (2E) . The second echelon is a'holding area

" responsible for emergency/urgent casualty care. If soldiers
cannot be returned to duty within a specified period of
time, they move to the third echelon (3E). The time period
and other specifics of the 1E and 2E vary| because they are
the‘résponsibiiity of the soldier's pargnL service (Army,
Air Force, Navy/Marines). The parent serLiees are also
responsible for patient movement from 2E Lo 3E; however, the
_ Air Force may move patients between these levels if aircraft
~ are available and conditions permit.

The patient becomes the responsibility of the Aero-
medical Evacuation System at the third ec eion. bThe 3E is
'further back from the combat zone than 1Eiand 2E and pro-
vides more sophisticated medical care. If patients cannot
be returhed to duty within a speciiied period of time (a
longer time period than when at 1E and 2E), they will be
evacuated to the fourth echelon (43). The 4E is a level
that is removed from the combat zone in an area called the

communications zone (CCMMZ). The COMMZ contains "lines of

communication, establishments for supply and evacuation, and




other agencies required for the immediate support and main-
tenance of all field agencies" (22:4). COMMZ also provides
the connecting link between the combat zone and the CONUS.

Transportation between 3E and 4E is the responsibility of

the Air Force and is generally performed by‘cf13o aircraft,'-

althcugh.C"9 ard c-141'aircraft may also be used. Each .

aircraft has dedicated medical equipment and medical person-

nel on board. From the 4E level, the patient is either
returned to dutj of evacuated to the United States. Under
current plans, mcvement to the CONUS will be performed by
c-141 aircraft. Once in the CONUS, the patient is moved by
C-9 or ground transpoftation to a hospital which is the pa-
tient's final destination.

The movement of patients between echelons and from.4E
to the’CONUS is controlled by medical personnel called
requlators. Regulating is defined as "the selection of a

source of care tc which casualties are évacuated" (22:5);

Medical regulators match casualties with hospiials capable

' of providing required medical care. Regulation within the
combat zone (1E, 2E, 3E) is the responsibility of each
individual service. The regulation of casualties from the‘
combat zone to the COMMZ (3E to 4E) and from the COMMZ to
the CONUS is accomplished by the Armed Forces Medical Regqu-

lating Office. One of the functicns of a medical regulatof




at the 4E level is to categorize patients bzsed on type of

injury.
1)
2)
3)
4)
5)
6)
-
8)

The regulator assigns a patient to a specific hospital
bed in the United States.
medical care required and hospital bed availébility for that
patient's inﬁury category. For example, a burn patient
wéuld b~ assigned to a hospital bed in the U.S. only if that
hospital can provide appropriate care for a burn patient.
The actual hospitals and number of available beds have been
identified by the National Disaster Medical System (NDMS).
The NDMS was devéloped to respond to any national disaster
to include a miliary contingency. As of Ju1y>1986, 73,000
beds in 950 hospitals have been identified (5:39).
ing on availability, patients are assigned to hospitals in

this order:

The eight categories are:
Gengral Medical;
Psychblogical;

Surgical Medical;
Orthopedic;

_sﬁinal Injury;

Burn Injury;
Pediatrics;
OB/GYN.

hospitals and civilian hospitals.

The assignment is based on the

military hospitals, Veterans Administration



1.2 Problems With the Present Systém

Due to the lack of a'dedicéted intratheater aircraft in
the present system, the United Stétes now has a sizable
stfategic aeromedical evacuation shortfall. The U.S. de-
pends on C-141s for the movement ofﬂpatients from the COMMZ
to CONUS, but the C-141 is also the primary aircraft used
forAcargo airlift by the Armed Forces. 1In 1984, thé shoft-
fall of C-141s was‘identified wheh the Military Airlift
Command (predecessor of AMC) commiésioned a Patient Distri-
bution-Redistribution Study (PDS). The PDS compared the
need for aeromedical airlift with the planned cargo flow in
a European scenario. The results showed an insufficient
number of C~-141 airframes for the aeromedical evacuation
mission (10:8). Based on this study, the Officé of the

Secretary of the Air Force authorized the creation of a new

~segment of the Civil Reserve Air Fleet (CRAF) dedicated to

aeromedical evacuation.

1.3 Future System

The future aeromedical evacuation system is based
heavily on CRAF aircraft. Boeing 767s will replace the
C-141 for patient movement from the COMMZ to the CONUS.
This will allow the C-141 to be dedicated to its primary




mission of cargo aiflift. The Boeing 767s will transport

patients from the COMMZ to major hubs within the CONUS.
Within the CONUS, C-130s will redistribute the patients from

the major hubs to smaller airports closer to the patient's

"assigned hospital bed. The C-130s will replace the C-9s so

that the C-9s may deploy to the combat zone and augment
theater evacuation forces. If the C-9s do not deploy,vthey
will augment the ¢-1305, performing patient redistribution
in the CONUS (5:31). '

- AMC is studying optioné to improve the efficien&y of
the aeromedical evacuation system. One such option is to
bypass the major hubs and to delivgr patients directly to
the airports nearest their assigned hospital. This option
would decrease the stateside redistribution of patients.
This approach would save time as the patients would get to
their assigned hospital more quickly than under the present

- system. It would also eliminate much of the required han-

dling of the patients. Presently, a patient arriving in the\
CONUS has to be unloaded at a major hub, reloaded on a
smaller aircraft, flown to another airfield, and unloaded a
final time. Flying direct would eliminate ﬁwo steps in this
prccess and save time and resources.

The elimination of the major hubs is not a goal of this
research. Instead, this research concentrates on the medi- |

cal regulator's task of assigning patients to an ultimate




destination and determining the routing‘ef evacuation air-

craft. As such, these results are applicable to both the
current hub and spoke system and the proposed direct deliv-

ery systen.

1.4 Problem Stafement _

Air Mobility Command does not have a methed to schedule
patients on individual aircraft which.would fly direct from
the 4E COMMZ to U.S. airports. The purpose of this research
is to develop a methcd to schedule patients on Boeihg 767s'
and then route each aircraft to a single CONUS airport eo
that the total time all patients spend waitihg for evacua-
tion is minimized. The enroute time to be minimized for
each patient starts when medical personnel release that
patient for evacuation from the COMMZ and stops when that C A
patient is loaded on a Boeing 767 for transport to the

CONUS.

1.5 Scope and Assumptions

There may be multiple strategic evacuation points in
the COMMZ; however, in this research we will consider the
regulation preblem at a single COMMZ evacuation point. The
problem addressed is the problem that each medical regﬁlator

faces: who to put on what aircraft and where to send that




MRS

aircraft. The job of the regulator is vital to the smooth

flow of patients in the system. The ability to schedule
patients on aircraft and the routing of those aircraft in an
efficient manner is crucial if the concept of direct deliv-
ery is to be effectively implemented.

There are two versions of the Boeing 767 that are being
purchased for the CRAF: the 200ER and the 300ER. Eech
version has the capability to carry 111 litter patients.
Hoﬁever, patients of certain categories require medical .
equipment’which_utilizes more than one litterlposition, '
Examples of this type of equipment are ventilaters, cardiac
monitors and stryker frames. Headquartere AMC estimates
that there will be a total of 11 litter positions taken up
by this medical equipment on each flight (15:2). Therefore,
each Boeing 767, regardless of type, is assumed to have a
capaéify of 100 litter patients and the need for this
additional equipment will not be explicitly modeled. The
major difference between the 200ER and 300ER is the capacity
to carry ambulatory ﬁatients. Ambulatory patients do not
require a ilfter for the flight and will sit in a different
portion of the aircraft; The 200ER can only carry ﬁwo
ambulatory patients while the 300ER can carry up to 75
ambulatory patients. AMcvis planning on procuring a fleet
of 44 Boeing 767s having a mix of 60 percent 200ER and 40
percent 300ER (15:1). Therefore, the assumed fleet size of




Boeing 767s used in this research is 26 200ERs and 18

300ERs.

The range df each type aircraft is assumed to be 4400

pautical miles (15:2). The average cruise speed is also

assumed to be identical: 460 nautical miles/hour. Based on

these two assumptions, the time required to fly to any

~airport from the COMMZ evacuation point is assumed not to be

a factor. While the time of flight frcm the combat zone to

the various airports will be different, the'differences in

travel time are assumed not to be large enough to be a

| v .
factor and wi%l be ignored. The time frame minimized ends

when the pati%nt is loaded on the aircraft.

In this re-

search, the a#rcraft are assumed to fly from the CoMMZ

: 1
evacuation point directly to an airport in the U.S. without
|

stopping enroute. . This assumption holds except for a Far

Eastern scenaJio'where a refueling stop in Hawaii is neces-

‘sary.

Even with a refueling stop, the overall time required

is not affected since each aircraft would have to stop.

Another assumption is that only Boeing 767s will be

available for the aeromedical evacuafion mission.

While

there are scenarios in which both C-141s and Boeing 767s

would be used, C=-141s are assumed not to be available for

the aeromedical evacuation mission.

AMC's present plan of evacuation.

This is consistent with

-

\
2\




>Genera1 Medical 12.6 16
I Psychological 3.2 29 "
I - Surgical 44.1 24 o ﬂ
I Orthopedic 36.8 50
F Burn 2.6 » 33
Spinal 0.7 . 38
' Pediatric 0.0 N/A
OB/GYN 0.0 — N/A

The percentage of patients in each injury category is
assumed to match the percentages shown in historical data.
Data has been obtained from AMC which details the expected
pefcentages and is shown in.Table 1. Also included in the
tablé is the average time a patient spends recovering in

U.S. hospitals.
Table 1

Percentage of Injury by Category (15#4)

vINUURY CATEGORY PERCENTAGE AVG RECOVERY TIME

The last two categorlies, pediatric and OB/GYN, will be — e

disregarded since it is generally assumed that there wili be

very few patients in these categories. ' w
The time a patient is loaded on an aircraft is assumed |

to be the same as the arrival time of the aircraft in the

theater of conflict. The loading of the aircraft will take

time, but the time will be the same for every patient as the

aircraft cannot take off until all patients are loaded and

10




is assumed to be approximately the same for all.plane loads.
Therefore, the loading time does not effect the solution of
the problemn.

Another major assumption is that fhe medical regulators
know the arri§a1 times of the Boeing 767s in advance. The
medical regﬁlators are assumed to know the number and loca-
tion of available hospital beds by category in the CONUS.
The beds have been identified by the National Disaster
Medical System plan discussed earlier. Medical regulators
need this information so they can make decisions on who to
put on each aircraft and where to send each aircraft.

The final assumption.made is that there is a fixed
number of CONUS airports, identified by military and civil-

ian planners.

1.6 Ovezview ‘

The remaining chapters detail the research effort.
Chapter 2 contains an overview of the mathematical progrém-
ming literature that relates to this problem. In Chapter 3,
the aeromedical evacuation problenm is formulated as a mixed.
integer program (MIP). A small problem is formulated and
solved and a discussion‘of the applicability of the model to
a larger problem is discussed. In Chapter 4, a heuristic

algorithm is presented and the development and performance

11




of the algorithm is described. Finally, conclusions and

recommendations are presented in Chapter 5.

12




2. LITERATURE REVIEW

The purpose of this chapter is to discuss the informa-
tion found in the literature whiéh applies to this research
effort. In this chapter, information pertéinihg to aero- |
medical eQacuation, computational complexity, scheduling
theory, integer programming, network theory, andigoal pro-

gramming will be reviewed.

2.1 Aeromedical Evacuation

Most of the literature specificaliy addressing aero-
medical evacuation deals with the policies of aeromedical
evacuation and the number of aircraft required to perform
the ﬁission; |

Four masters theses have been conducted at the Air
Porcé Institute of Technology concerning the war time aero-
medical evacuation of patients. Joseph Alfano and John
O'Neill performed a simulation which uses a European scenar-
io vo test the capability of CRAF aircfaft. However, their
main focus was on the route structure for the CONUS redis-
tribution of patients. Their simulation used a hub and
spoke system, and they concluded that there was an ihsuffi;
cient number of C-9 aircraft. They mentioned the direct
delivery of patients only as an alternat}ve to CRAF aircraft

routing (1:31). Michael Burns and W. Brand Carter conducted

i3




A

parallel research efforts in 1990. Their main focus was

also on the CONUS redistribution of patients; Charles Wolfe
has conducted a simulation study to evaluate the entire
aeromedical evacuation system using Boeing 767 aircraft and
a hub and spoke system. It is titled "The Use of Simulation
to Evaluate Strategic Aeromedical Evacuation Policy and
Planning"(Zl); | | v
Headquarters AMC has discussed alternatiwves to the

present hub and spoke system, but has not conducted an in-

"depth study on the matter. These alternatives were men-

tioned in a briefing to the AMC staff onlaltefnatives to the
MD-80 aircraft (19:23). '

Lt COllJohn D. Becker's Air War College Research paper,
"peromedical Evacuation: Do the Pieces Fit", provides an
excellent overview of the entire aeromedical evacuation
process. Becker first describes the theater aeromedical
evacuation system and what impact changing the time period
that the patient spends in the COMMZ has upon aeromedical
planning and policy. The theater evacuation policy deter-
mines this time period which influences the percentage of
patients that have to be evacuated to the CONUS.

Becker reiterates the C-141 shortfall identified in the
Patient Distribution-Redistribution Study commissioned by
MAC. He then discusses the proposed concept of a hub and

spoke bperation using the Boeing 767. Lt Col Becker does

14
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not discuss the concept of alternatives to the hub and spoke

system.

2.2 Complexity Theory

This résearch involves the routing of aircraft and the
scheduling of patients. Accq:ding to Bodih, most routing
and scheduling problems fall into a categofy of probleﬁs
known as non-determinisﬁic polynomial hard (NP-Hard) (6:7€).
A review of the concepts of complexity theory is required to
understénd approaches for solving‘problems in the class NP~
Hard. _ | |

The goals of complexity theofy are fo broadly classify
problems and algorithms according to the time needed to
solve them on‘computers (14}3). Decision problems come in
all degrees of difficulty, from ones that are solved.readily
to ones that cannoi be solved. The best solved problems are
classified Polynomial (P). The class P is tﬁe set of prob-
lems for which the number of basic computational steps
required to generate a solution is a polynomial fuhction of
the size of the problem (14:8). Some of‘thé problems that
fall in the class P are linear programming, minimum spanning
trees, and maximum flow in a network (14:8).

| The class P is a subset of problems of the class NP. A

problem is in NP if one can verify the correctness of a

15




solution in polynomial time. The class NP contains all
class P probiems. |

Problems to which all members>of NP polynomially reduce
are called NP-Hard. A problem reduces to a second problem
if, for every ingtan¢e of the first problem, we can con-
struct an equivalent instance of the second problém; There~
fore, any algorithm that solves thé second problem can be
cohvérted'to an algorithm for solving:the first problem. A
problem polynomially reduces to the second problem»if a
polynomial time algorithm for the second would imply a
polynoﬁial time aigorithm for the first (14:6). Problenms
which are both'in NP and NP-Hard are called NP;Cohplete.
Problems of this class are among the most difficult to
solve. if a problen is NP-Hard, it is as least as difficult
as any NP-Compiete probiem (13:138).

Generally, the effort réquired to solve NP-Hard prob-
lems ihcreases explosively with problem size in the worst
case for all known solution alagorithms (6:76). .if.a problem
has been proven to be NP-Hard, it does not preclude the
existence of polynomial time algorithhs for specific cases
of the éroblem. When faced with_an NP-Hard problem that
cannot be solved with a polynomial algorithm,‘a heuristic
procedure is often emplbyed in an attempt to find a feasible
solution. Nemhauser and Woolsey‘define a heuristic algo-

rithm as an approximate algorithm designed to find good, but

16




not necessérily optimal, soluﬁions quickly (13:393). A heu-
ristic is considered effective if the solutions are consis-
tently close to optimal. A heuristic algorithm usually
exploits some aspect of the problem.structure (either mathe-
matically or intuitivély) to prbvide feasible and néar épti-

mal solutions (6:76).

2.3 Scheduling Theory

This reséarch effort deals with scheduling patients on
individual aircraft to minimize their wait time. Many
vaspecté of scheduling theory,'particularly priority dis-
patching rules apply directly to this aspect of the problen.
Kenneth Baker in his book, Sequencing and Scheduling, lists
and explains some of the most popular priority dispatching_'
rules. They are (2:197,217): |

1) Shortest Processing Time (SPT): Select the
operation with the minimum processing time.

2) First Come First Serve (FCFS): Select the
operation that entered earliest. ‘

3) Random (RANDOM): Sei;5£m£héﬂsﬁeféfién at
randou. _

4) Most Work Remaining (MWKR): Select the operation
associated with the job having the most work
remaining to be processed.

5) Least Work Remaining (LWRR): Select the operation
associated with tha job having the least work
remaining to be processed.

6) Earliest Due Date (EDD): Select the operation with
the earliest due date.

17




- all cases. The priority dispatching rule used depends on

No single dispatching rule has been found to be dominant in

the type problem and the measure of effectiveness being
optimized. |

Analyzing the aeromedical eyaéuation problemlreveals
that some of the priority dispatching rules need not be
cdnsidered. In Chapter 1, the assumption was made that the
work remaining (flying fime of the aircraft) was identical
for all patients; therefore, MWKR and LWKR'can‘be eliminated
from the list of dispatching rules to be considered. The
patients do not have a due date'at a CONUS hospital, so EDD

‘may also be eliminated from the list. The three remaining

dispatching rules (SPT, FCFS, and RANDOM) are all possible
candidates for use as a priority dispatching rule for the

aeromedical evacuation problem.

2.4\ Integer Programming

Both routing and scheduling problems may also be formu-
latedq as integer programs in many, but not all, cases.
Integer programming (IP) techniques are often applied to
solve \routing and scheduling problems. The purpose of  this
section is to discuss some of the solution techniques used
to solve integer programs, including branch and bound, and

the Pivot and Complement heuristic.

18




Perhaps the method to solve integer programs that is

most widely used is the branch and bound method. The branch
and boﬁnd method finds the optimal solution by efficienﬁly
enumerating the-points in a problem's feasible region
(20:488). The branch and bound methcd begins by solving the
linear programming (LP) relaxation to the IP. The value of
the objective function of the LP relaxation provides an
upper bound when the goal is to maximize the objective
function. No integer solution can exceed the upper bound.
if the solution to the LP relaxation contains all integer
values, then the solution to the LP is also the solution to
the IP (20:489). If an integer solution is not found, the
next step is to partition the feasible region in an attexmpt
to find the optimal solution of the IP. This is the branch-
ing pcrtion of the procedure. An integer variable that is
not integer valued in the current solution of the relaxed LP
is piéked to branch upon. Two or more subproblems are |

: creatéd and constraints are then added to the problem to
eliminate the non-integer solution. The process is repeated
until all integer variables have integer values. The objec-
tive function value of this solution is a lower bound on the
optimal solution value for the problem. The next step is to
enumerate other possible combinations in an attempt to find
an improved integer solution. There are different tech-

niques which pick the branching variable and how to search
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each branch. Some of the techhiques are depth first,’

breadth first, and quick improvement. Normaily, depth first
is used because feasible solutions satisfyiné the integer
requirements are generallf found‘deeper in the brénch and
bound tree and it is computatioﬁaily easier when using the
dual simpiex procedure (13:358).

Binary integer prbgrams and mixed integer programs are
in the class NP-Hard (14:83). Therefore, as fhe problems
get larger, tﬁe computational time required to solve them
increases greatly. If the program gets too large, other
ﬁethods such as‘heuristic procedures should be used in §rder
tb solvé the problem. One heuristic is the'Pivot and Com~
plement heuristic developed by Egon Balas and Clarence
Martin. |

‘The Pivot and ¢omp1ement heuristic is used for finding
approximate solutions to 0-1 programming problems. It uses
the fact that a 0-1 program is equivalent to the associated
linear program with the addedlfQQdiféhéht £hat7ali'éié¢k
variables, other than those in thé upper bounding
constraints, be basic (3:86). The method starts by solving
the LP relaxation, and then searches in the vicinity of the
optimal solution to the LP relaxation.for an integer feasi-
ble solution. It conducts this search by trying to force
any basic integer variable that is fractional out of the

basis. This is done by performing pivots. Non-basic inte-
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ger variables can be flipped from zero to one or from one to

zero. This is called complementing (7:227). Both one at a
time and two at a time complements are attempted. If a
feasible solution is found, additional complements are

performed in an attempt to improve it. The computational

effort involved in the Pivot and Complement heuristic proce-

dure is bounded by a polynomial in the number of constraints

and variables (3589).

2.5 Network Theory

Many routing and scheduling problems can be formulated
as networks. The advantage to formulating problems as net-
works is that many network problems can be solved in polyno-
mial time (6:75).

A network or graph is defined using two types of sets:
‘nodes and arcs. An arc consists of an ordered pair of.
vertices (nodes) and represent a possible direction of
motion that may occur between vertices (20:389). Networks
can be represented pictorially by points and lines. The
points represent the nodes and the lines represent the arcs.

Minimum cost flow programming is the type of network
flow programming that is used in this research. In a mini-
mum cost flow program, the arcs of the network are described
by two parameters. The parameters are the cost of the arc

and the capacity of the arc. The cost of the arc reflects
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the éxpense for a unit of flow to travel along that arc.

" The capacity of the arc is how much flow can travel throﬁgh

the arc. The objective of minimum cost flow programming is
to flaw the available supply through thé'netwdrk'to satisfy
demand at minimal cost (4:420). | |

One of the attractive aspects of formulating the prob-
lem as a network is the structure of the constraint matrix.
The constraint matrix is called a node-arc incidence matrix.
When formulated this way, the nodes‘of the problem are

represented by rows of the matrix. The columns of the

'matrixfrepresent the arcs of the problem. A matrix is

totally unimodular if the determinant of each square

submatrix‘is 0, 1, or -1 (13:540). If a matrix is totally
unimodular and the model parameters are integral, then the
solution to the LP relaxation will result in integer answers

(13:541). This aspect is advantageous because one does not .

need to use an IP solution package to get integer answers.

__.The netwbrk simplex algorithh is a specialization of
the simplex algorithm. It performs simplex operations
directly on the network itself. The overall efficiency with
this procedure is 200-300 times faster than the standard
simplex procedure. This means that large problems can be
solved with a reasonable amount of effort (4:419).

If a network structure is embedded in a linear program,

the problem is called a network with side constraints. In
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general these problems do not have a totally unimodular

matrix, and cannot'be directly solved by LP procedures.
When the network part of the problem is large compared to
the ﬁon~network part, especially if the nuﬁber of side
constraints is small, it is worthwhile to exploit this
strﬁcfure in the solution process. The solution time will
be reduced when éolved this‘way. However, there is no guar-
antee that the problem will be solved in polynomial time.
2.6 Goal Programming and Daviational Variables | |

Goal programming is a technique used to formulate and E
solve linear programs where there are multiple objectives or
conflicting goals. Several aspects of goal programming are
used in this research, particularly the use of deviational
variables.

Generally, in goal programming, two deviational vari-

ables are introduced for each inequality constraint (repre-

senting a goal) in a linear program. There is a positive
variable-representihg the amount by which a goal is exceed-
eé, and a positive variable representing the amount by which
a goal is underachieved. The inequality constraints are
transformed into equality constraints by the addition of the
two deviational variables. 1In a sense, we are adding a
slack variable and an excess variable instead of just one or

the other. After the deviational variables are added to the
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constraints, a weight is given to the deviational variables
in the objective function. The weights given to the devia-
tional variabies depend on the objective (or objectives)
being optimized and vary depending on the specifics of the
problem. Goal programming can be used in two different ways
to represent tradeoffs between different goals. According
to Winston, these are (20:189): o

(1) Assign a penalty per unit deviation from each goal
and use linear programming to minimize the total
penalty incurred because of an unmet goal.

(2) Rank goals in priority from highest to lowest goal
and use pre-emptive goal programming and goal
programming simplex.

Pre-emptive goal programming and goal programming simplex
are techniques specifically designed to solve goal program-
ming problems and are not used in this research. Devia-

tional variables are used in this research as described in

(1) above. : .
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3. PROBLEM FORMULATION

The purpose of this chapter is to present the formula-

tion of the aefomedical evacuation problem as a mixed inte-

ger program (MIP). Following the model formulation, a small

problem is presented and its éolution discussed. Finally,
there will be a discussion of the number of iﬁteger vari-
ables required to formulate a realistic problem and thé need
for a heuristic procedure for assigning aircraft to airports

and assigning patients to aircraft.

3.1 Aercmedical Evacuation Model Formulation

In this problem, patients are assigned to aircraft and

"aircraft are assigned to airports. 1In the MIP formulation,

all possible patient and aircraft assignments are repre-
sented by binary (0-1) variables. Assignments are con-
strained by both aircraft and airport capacities. Aircraft
capacity as defined in Chapter 1 is the capécity of a Boeing
767. Airport capacity is defined to be the number of avail-
able hospital beds by injury category located at hospitals
near that airport. The hospital capacity data used fpr‘this
study is included in Appendix A. The overall objective of
the model is to minimize the waiting time of the patients

without exceeding either capacity.
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Each patient and each aircraft has certain characteris-
tics associated with them. The patients are classified
based on theif type of injury. Each patient also has a
release time before which he cannot be transported by an
aircraft to the CONUS. Each aircraft has a capacity and an
arrival time when it will arrive in theater at the COMMZ
evacuation field. |

Each possible patient to aircraft assignment and each
aircraft to airport assignment has an associated binary
variable. If a variable representing a patient assignment
to a particular aircraft is set to 1, the patient has been
assigned to that partiéular aircraft. If not, the va#iable
is 0 and the patient is not assigned to.that'aircraft. The
same approach applies to aircraft to airport assignmehts.

Each of the variables have indices and sets associated
with them. Index i identifies a particular patient in Set
P,. The set P, contains patients grouped by injury category
k. The set of all patients is P so P=, P,. Index j iden-
tifies a particular aircraft in Set J. The set J is com-
posed of all aircraft regardless of model. The set J, is a
subset of J. sét J; contains all aircraft whose arrival
time is after patient i's releése time. 1Index k identifies
an injury category in Set K. The set K is composed of all
injury categories. Index h identifies a particular airport
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in set H. The set H is composed of all airports. The

variables used in the formulation are as follows:

1 if patient i is assigned to aircraft
Xy = { 0 othpeaimse o 3

- {l.if aircraft § is assigned to airport h

Yin 0 otherwise

8 4n8 Continuous variable with an upper bound of 1. Takes
on a value of 1 when patient i is assigned to
aircraft j which is assigned to airport h.

There is also a variable x;, which represents a patient
assignment to the dummy aircraft, which is described below.
In this formulation, the planning horizon is two'days.
A planning horizon is defined to be how far into the future
one uses information in making the current decisions
(17:540). In setting th. planning horizon at two days, the
model accounts for patients who cannot be airlifted within
the planning horizon by assigning them to the dummy air-
craft. The model does not take into account any effect
patients not airlifted have upon the next day’s process.
The following are parameters in the formulation:
Rel; = Release time of patient i. This is the time
medical personnel state that the patient is stable
enough for evacuation to the United States.

Arry = Arrival time of aircraft j at the COMMZ evacua-
tion point.

CA, = Capacity of aircraft j
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CHpy = Hospital bed capacity of airport h for category
k patients.

Model Fbrmulation

The formulation is as follows:

Min ((Arr, - Rel )x.‘+M*x )

;ﬂ:’ E 1 11844 4D (1)
SUBJECT TO:
» g xu + Xipp ™ 1 Y ilepP (2’
1 .
| .

; Yp=1  Vjery (3)
§ x‘u < C'.Aj VjeJ‘ (4)

2., S CH, VY heH,V keK
PR
Xy ¥ Y= Zyp S 1 V 1€P, V jeJ,, ¥ heH (6)

for all ie P, for all je J;, for all he H
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The objective function (Equation (1)) hinimizes the
patients' wait time and penalizes assignments made to the
dummy aircraft. wait time is defined to be the amount of
time between the time the patient is released for evacuation
by medical personnel and the time he is loaded on an air-
craft. The actual wait time minimized'by the model is the
time difference between the arrival of the patient's as-
signed aircraft and the release time of the patient. The
aircraft's arrival time and the time the patient is 1oaded
onto that aircraft are assumed to be identical. Aside from
the wait time, there is an additional term (M#x,;) in the |
objective function. This term penalizes any patient aséign-
ment to the dummy aircraft. The punalty term (M) used is
greater than the planning horizon length and muét be greater
than the greatest possible wait time of any patient.

The first set of constréints_(Equation (2)) state that
a patient must be assigned to ekaétly one aircraft.

The second set of constraints (Eqﬁétion (3)) state that
each aiiéfaft”muséwggﬁéssigned to one airport. Itwié”éé;
sumed here that an aircraft will only offload patients at
one airﬁort. This assumption‘is preferred by AMC (12).

Equation (4) ensures that the number cf patients as-
signed to each aircraft does not exceed the aircraft capaci-

ty. The dummy aircraft has an infinite capacity.
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The final two sets of constraints (Equations (5) and
(6)) ensure that the number of patients in an injury catego-
ry transported by all aircraft going to a commbn airport
does not exceed the available number of beds for that‘injufy
category at that location. The constraints of Equatidn (6)
ensure that 2z, is one if ﬁatient i is assigned to aircraft
.j that goes to airport h. These constraints were a hodifi-
. cation of the formulation outlined by Ravindran, Phillipé,
and Solberg in their book Operation§ Research Prihciples and
Rractice'on page 190. The z, variablg is in effect the

product of the x;, and y,, variables (16:190).

3.2 Sample Problem szmulation and Solution.

The purpose of developing this sample problem was to
formulate and solve a small, but realistic problem. Analyz-
ing a small problem's formulation and solution helps to
determine whether the solution methodology can be applied to
larger, more realistic problems. The sample aeromediéal
evacuation problem was solved using LINDO software on a
personal computer, and its fcrmulafion and solution is
listed in Appendix B.

This sample problem addresses the scheduling of ten
patients on two aircraft traveling to two different air-
ports. The patients have two possible injury categories and

different release times (given in days). There are two
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aircraft with different capacities and different arrival
times. The hospitals have different capacities for each of
the two categories. The following tables show the specifics

of the problem:

Tahie 2

Sample Problem Aircraft

-

" Arrival Time

Capacity

Aircraft

4.0 5
! F 6.0 ] 4 H
Table 3

Sample Problem Patients

Patient Category Release
Time

1 A 0.0 4.0 6.0

L 2 B 1.0 3.0 5.0
I 3 A 2.0 2.0 4.0
1 s A 3.0 1.0 3.0
r 5 B 3.5 0.5 2.5
| 6 A 4.0 0.0 2.0
I 7 B 4.5 N/A 1.5
l' 8 B 5.0 N/A 1.0
l 9 A 5.0 N/A 1.0
I 10 A 5.5 N/A 0.5
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Table 4

Sample Problem Airports

Capacity
_Category A

Capacity
Category B

The problem was designed so that all the patients could
not be evacuated by the fleet of aircraft. Also, the capac-
ity of the airports was designed so that'one airﬁort could
not accept all of the bétients.

The solution of this probiem is shown in Table 5:

| Table S

Sample Problem Solution

AIRPORT ASSIGNMENT ‘

1,2,4,5,6

3,8,9,10

The recults indicate that neither the airport capacities or
the aircraft capacities were exceeded. The only patient not
assigned to an aircraft was #7, and this was due to the
aircraft capacity. For the nine evacuated patients, the _

total wait time was 15 days.

32




3.3 Applicability to Larger Problems.

Following the solution of the_small aeromedical evacua-

tion problem, an analysis was done to determine if the
methodology could be applied to solve larger problems{

The primary factor affecting the solution of the aero-
medical evacuation problem, and most integer programming
problems; is the number of integer decision'vatiables. In
the general formulation of the problem, the maximum number

of x,; variables is obtained by multiplying the number of

patients by the number of aircraft. It should be noted that

this is an upper bound on the number of x;; variables as not

every patient—aifcraft combination is possible (a patient

having a release time after the arrival time of an aircraft

cannot be assigned to that aircraft). In the example prob-
lem with 10 patients and two aircraft, there are a total of
20 possible x,; variables. However, since there were four
patients whose release times were after the arrival time of
the first aircraft, only 16 x,; variables were necessary to
rodel the sample problem. However, in the worstkcase sce-
nario, the number of x;; variables is the number of patients
times the number of aircraft. The number of y,, variables
is the number of aircraft multiplied by the number of air-
ports.

The total number of binary variables required to solve

the problem is the number of x,, variables plus the number
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- of yj variables. The zy, variables in this formulation are
continuous and do nof represent a significant computational
burden to the problem. ‘

Casualty data has been obtained‘from Headquarters AMC
| detailing the total number ‘of éausalities‘expectéd during
warfime.: There were three scénarios for which AMC had
obtained casualty estimates. The worst case scenario was
chbsen in order to determine the maximum size the problem
formulation could attain. The data obtainedlgives only the
'total number of expected causalities, and does not detail
injury by category. Historiéél percentages of injuries by
category are listed in Chapter 1 and do not influence the
size of the problen. ' |

In the selected scenario, the worst case'generates
approximately 2000 casualties per day. If theré are two
' COMMZ evacuation points in this scenario (18), this reduces
the number of patients per evacuation.point‘to 1000. It is
assumed éﬁat four aircfaft will be unavailable due to main-
tenance, thereby'féduéiﬁérthe available fleet to 40 air-
craft. _}§ is also assumed that one-half of the incoming
Boeing 767s (20 aircraft) would arrive at a single evacua-
tion point every two days. Therefbre, approximately 10
aircraft per day arrive at the COMMZ evacuation hospital.

Based on this data, an estimate of the number of

binary variables can be calculated for a given day. The
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number of x,, variables is 1000 patients times 10 aircraft
for a total of 10,00 variables per day. The number of yj,
variables is significantly less than the number of x;,
variables. There are at most 15 airports in the model.
Therefore the maxiuum number of y,, variables is 150 per d=y
or lolaircfaft times 15 éirports. The total number of -
binary variables is the sum of the number of x;; and yj,
variables and is 10,150 per day.

Problems of this size cannot be solved easily. Nemhau-
ser anh Woolsey state in their book, Integer and Combinator-
ial Op%imization, that problems having several thousand
intege; variables have been solved optimally (13:16). In
generai, IP programs are classified as NP-Hard, and although
some lgrge IpP prqblems have been solved optimally by taking
advantége of special structure in the problem, an appfoach
to tak% advantage of any special structure within this
probleé was not found. The worst case problem siée is too
large éo expect to solve quickly in the dynamic environment
which Qould exist in wartime; therefore, a heuristic ap-

proach has been developed and is discussed in Chapter 4.
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4. HEURISTIC DEVELOFPMENT AND TESTING

The purpose of this chapter is to describe a heuristic

'aiQorithm developed for the aeromedical evacuation problem.
Fdilowing the description of the heuristic, the computation-
al testing of the procedufe will be discussed. o | ' -

| There are two distinct subproblems of the aeromedical -
evacuation problem: assigning aircraff to airports and
assigning patients to aircraft. The problem was divided | o /
into two subproblems and these are solved in an itefative . : /
procedure. The first subproblem is that of assigning air- . / _
craft to airports and will be referred to as the aircraft- -
airport assignment problem. These results (aircraft to
airport assignments) are then used as input to the sécond ) - \?ﬁ
subproblem: assigning patients to aircraft. The secohd ' o _ | \
subproblem will be referred to as the patient-aircraft -
"assignment problém. These subproblems are solved repeatedly

until a suitable termination rule is satisfied. A flow N

chart of the program is shown on the next page. .

4.1 Aircraft-Airport Assignment Problem. t;//‘
The first subproblem is the assignment of aircraft to |

airports. Given an assignment of patients to aircraft
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Pigure 1: Plow Cart of Aeromedical Evacuation Problem
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(either through an initialization procedure or from the
~output of the patient-aircraft assignment problem, both
described léter), the task is to assign aircraft to air-

ports. Note that a feasible assignment based on hospital

capacities may not be possible. Therefore, the objective of

this subproblem is to minimize this infeasibilify. This is
accomplished through a goal programming type approach.

In the analysis of the aeromedical evacuation problem
presentéd in Chapter 3, it was determined that the number of
binary variables required for fhe aircraft-airport assign-
ment problem was small enough to permit solution by integer
ﬁroqramming. The purpose of thé‘aircraft-airport assignment
problem is to select the best subset of airports based on
the distribution of patients released for evacuation to the
CONUS. In this subproblem, the wait time of the patients is
not a factor in the decision1on where to assign the air-
craft. For this subproblem we are only interested in mini-
mizing the amount that hospital(capacities are exceeded by
this assignment. A goal‘programmihg type approach using
deviational variables is used to ensure this.

The indexes, variables, and parameters used previouﬁly
remain the same for the aircraft-airport assignment problem.
Two new variables (deviational variables) and one neﬁ péram-

eter are introduced in the formulation of the aircraft-

38




airport assignment problen. The new variables are as

follows:
SPLUS), : Surplus capacity at airport h for patients
in category k. This variable is the number of
category k patients under the capacity of
airport h. _ :
EXCSp ¢ Excess number of category k patients traveling

to airport h. This variable is the number of
category k patients over the capacity of airport

The ¥3n variabie previously defined is:

« f11f aircraft j is assigned té airport h
Yin {0 otherwise 3 o P

The new parameter is as follows:

Ayx: Number of category k patients assigned to
aircraft j.

The previously defined parémeter is:

CH,,: Hospital bed capacity of airport h for category
k patients.

The IP formulation is as follows:

MIN ;,; EXCSpy (7)
\

SUBJECT TO: \

; Ajs Yin + SPLUSy - EXCSy = CHy, Y BEH, V k€K (g)
€
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Ysn € {0,1}, SPLUS,,, EXCSy 2 0 |
Objective Function. The objectiVe function minimizes the
number of patients assigned to an airport in which the
capacity of that airport by patiént éategb:y has been ex-
ceeded. For instance, if 12 general medical category pa- : A
tients are assigned to aircraft j travelling to airport h j
where the capacity is 10 general medical patients, the value | : /7 .
of EXCS), would be two. However, if the capacity of that | o .

airport were 14, EXCS,, would be zero and SPLUSy, would have

a value of two.

Constraint Sets. The first constraint set (Equation (8))
represents the bulk of the integer program. It applies a
goal programming approach in which there are variables for
falling short of the goal and variables for exceeding the
goal. The goal in the aircraft-airport assignment problem
is to minimize the number of patients assigned to an airport
where a hospital bed is not available for that patient. -
Minimizingthe sum of the variables EXCS ,, models this goal. ,
The Ay, parameter is the number of category k patients
assigned to aircraft j. 1Initially, the loading of patients
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is FCFS and the distributioh is listed in Table 6 in Séctian
4.3. In subsequent iterations of the algorithm, the Aﬁ
ﬁarameters are updated based on the solution of the patient-
aircraft assignment problem. The y;» variable is the same
as in chapter 3 and represents the assignment of aircraft 3
to airport h when y;, = 1. The SPLUSM‘variabie represents'
the unused capacity at airport h for category k patients.
The right-hand-side vélue (CH,,) of the equality cohstraints
is the number of categofy k patients that can be treated at
hospital facilities served by airport h. |

The second constraint set (Equation (9)) ensures that
an aircraft can only be aésighed to one airport. This
models the assumption that each aircraft offloads it pa?
tients at a single airport.

The values of the Yy variables (assignment of aircraft
to airports) are passed to tha patient-aircraft assignment

problen.

The IP was formulated using the General Algebraic
Modeling System (GAMS) and solved using the GAMS/ZOOM1MIP
solver on a VAX mainframe computer. The GAMS code is listed

in Appendix C.

4.2 Patient-Aircraft Assignment Problem.
The second subproblem solved is the patient-aircraft

assignment problem. Given a set of aircraft-airport assign-
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ments, the goal is to assign patients to aircraft so that
patient wait time is minimized. It would be,pfeferable to
load all aircraft to capacity, élthough this may not be
possible due to airport capacities.

The problém is formulated similar to the formulation in

- Chapter 3. The majo:-difference is that the th variables

are now fixed parameters and thé z;jh variables are no

longer needed. The formulation is:

Min ((Arr, - Rel,)x,, + M*x, ) -
; J& ] 443 7 4D | (1)
SUBJECT TO:.
€J3 ’
g x,j E 4 CA_-, v 16&]} - (4)
€
6J3

X4 e‘{o,l}, X;p € {0,1}, for every'i;’for every j

Equations (1), (2),.and (4) are identical to the constraints
in Chapter 3. Equation (10) is an altered version of the
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constraints in Chapter 3. They were altered by replacing
the z4, variable with the Y3in*Xyj term. The Zjjn variable:
was a product of the binary variables X;y and yj,, but since
the aircraft-airport assignmgnts (yjh) are fixed parameters,
the need for the z,4, variable no longer exists.

The vast majority of the binary variables used in the
formulation of the aeromedical evacuation problem presented
above and in Chapter 3 were in the assignment of patients to
aircraft. Therefore, a uwore efficient method needs to be
used in order tn reduce the computational time required to
solve this subproblem. The method used is network flow
programming. A minimum cost flow network was designed to
minimize the waiting time of the patients. The network is
illustrated in Figure 2. The network is a smaller version
of the actual one used in the research. The network in
Figure 2 uses only three categories and two aircraft. The
network starts with a source node (S) which generates the
number of patients released on a daily basis. There are
three arcs emanating from the source node. Each arc travels
to a node which repesents the injury category that the |
patient is in and the day the patient was generated (GMi,
Pl1, S1). The 1 in the label GM1 represents patients gener-
ated on day 1. Once again, historical percentages were used
in the generation of patients. The cost along the arcs from

the source node (labeled 1 in Figure 2) is zero and the

43




GM1 —{ GMAL_

ACD——CAPD_ &
3 | | |
Pi | PA | T
8 | 4
g c DAR” °
2
81 SA 3

Figure 2: Network Flow Diagram

capacity.isbthe number of patients generated for that cate-
gory. from each injury category, an arc travels to a sec-
ondary injury categofy node (GMA, PA, SA). These arcs
(labeled 2 in Figure 2) have a capacity of the number of
patients in that injury category and a cost reflecting the
number&of days each patient has been waiting. If a patient
was released on the day that the aircraft is scheduled to
arrive, | the cost along the arc would be zero. If the pa-
tient wgs generated the day before and left unassigned from
the previous day, the cost would be one day. From each of

the second injury category nodes, arcs travel to each air-
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craft including a dummr aircraft (ACl, DAC). These arcs
(labeled 3 in Figure 2) represent the assignment of patients
to aircraft. The arcs’ capacities are the injury category
capacity of the airport to which the aircraft has been as-
signed. The cost on the arc is the patient’s wait time.
The additional waif time along this arc is thé time from
midnight on the current day to the arrival time of the
individual aircraft. The wait time of the dummy aircraft
(DAC) Qas set at a levei much greater than the wait time of
all the patients, thus discouraging the assignment of pa-
tients to the dummy aircraft. The capacity of the arcs
travelling to the dummy aircraft is unlimited. From each 6f
the aircraft nodes (including the dummy aircraft node), an
arc (lébeled 4 in Figure 2) travels to an airpor’. node (AP1,
DAP). The capacities of these arcs (other than those inci-
.dent to the dummy aircraft) is the capacity of a Boeing 767:
100 patients. The cost of the arc is zero. A single arc
(labeled 5 in Figure 2) travels from each airport node to a
“'sink node (T) whose demand is the number of released pa-
tients in the systen. |

A modification to the network is required when more
than one aircraft has been assigned to the same airport.
The modification was needed because an airport’s capacity
might be exceeded by sending multiple aircraft to an airport

under the present network configuration. For example,
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consider a case where two aircraft have been assigned to the

same airport whose GM capaéity is 30. The example is illus-

trated in the following figure.

AC1

GMA

AC2

AP1

Capacity of AP1
for GM Petlents

Pigure 3: Network with S8ide Constraints Example

There are arcs travelling from the second injury category

nodes to two aircraft nodes. The flow along each arc is 20

GM patients. The capacity of each of these arcs would be

the capacity of the airport which is 30 GM patients.
there would be 40 GM patients arriving at the airport whose

capacity is 30. This problem is solved by incorporating

side constraints. The side cohstraints ensure the total arc

flow out of the injury category nodes travelling to aircraft

46

Then,




nodes (assigned to the same airpott) must be less than or

equal to the capacity of the airpo:t by injury category.

The network was formulated and solved using the SAS/OR
package on a VAX mainframe computer. The SAS code is listed
in Appendix D. The results of the minimum cost flow program
were then used as input to the aircraft-airport assignment

problem.

4.3 Aeromedical Evacuation Heuristic Algorithnm.

‘The two assignment préblems were linked in one algo-
rithm. 1In order to begin the algorithm there must be an
initial éssignment of patients to aircraft. Since the
overall goal of the heuristic algorithm is to minimize the
patients’ waiting time, the obvious choice for the initial
loading is to evacuate the patient as soon as possible after
he/she is released. Therefore, the dispatching rule used is
first come first serve (FCFS). The aircraft-airport assign-
ment problem is solved first to take advantage of this easy
initialization scheme. The patient-aircraft assignment
problem is then solved using the generated aircraft to
ajirport assignments. If necessary, the process is repeated
until one of the termination criteria is met.

The algorithm is as follows:
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Step 0.

8Step 1.

Step 2.

step 3.

8tep 4.

step 5.

AEROMEDICAL EVACUATION HEURISTIC ALGORITHM

Initialization. Assign patients to aircraft on a

. first come first serve basis based on release

times. 1Initialize iteration counter to 0.

Aircraft-Airport Assignment. Given patient-
aircraft assignments, assign aircraft to airports.
Pass aircraft-airport assignments to Step 2. 1If
assignments are repeated between iterations,
proceed to Step 3. Increment iteration counter

by 1.

Patient-Aircraft Assignment. Given a set of
aircraft-airport assignments, solve the minimum
cost flow problem minimizing patient wait time.
Proceed to Step 3.

Check for termination. Proceed to Step 5 if:
1) Aircraft loaded to capacity.

2) Aircraft-airport assignments remained unchanged

between iterations.
3) User prescribed iteration limit exceeded.
If not proceed to step 4,

Update. Update A;, to the aircraft loads
determined by Stea Proceed to Step 1.

stop.' A feasible assignment of aircraft to
airports and patients to aircraft has been found.
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The first step of the algorithm (Step 0) is the ini-

tialization step. All aircraft are loaded with patients
being assigned to aircraft using a FCFS dispatching rule.
The parameter Ay, representing the patient-aircraft assign-
ments, is passed to the aircraft-airport assignment problem.
Step 1 is the aircraft-airport assignment problem. |
This prdblem is solved and the results (aircraft-airport
assignments) are passed to the patient-aircraft assignment

problem. Even if the objective function value is zero, qhe

|
aircraft-airport assignments still need to be passed to the
o

patient-aircraft assignment problem. This is necessary to

I

obtain the wait time of the patients. If the aircraft-

|
airport assignments are repeated between iterations, the '
. |
. ) i
algorithm proceeds to Step 3 and terminates. Finally, the
iteration counter is incremented by 1 before proceeding to

Step 2.

Step 2 is the patient-aircraft assignment problem. i
There are twé results from the patientfaircraft assignment
problem. The.results are the new patient-aircraft assign-
ments (Ajk) and the total patient wait time.

The results are passed to Step 3. At Step 3, the re-
sults of Step 1 and Step 2 are used to determine if the
algorithm can be terminated. 1If the results indicate that
all aircraft (excluding the dummy aircraft) are loaded to

capacity, the algorithm will proceed to Step 5 and termi-
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nate. If all aircraft are loaded to capacity, there afevno

airport capacities that are violated. This is due to the
design of the network. The capacities>are not violated
becausé the network will not allow any flow greater than the
éirport capacity. 1Instead, the network will assign patients
to the dummy aircraft. Also, the patient wait time.ié
minimized. This is the criteria that is desirable to termi-
nate from, because thevsolution is optimal for tﬁe selected
aircraft-airport assignments and the distribﬁtion of pﬁ?
tients. The algorithm also proceeds to Step 5 and termi-
nates if a prescribed iteration limit is exceeded or if the
aircfaft-airport assignments are unchanged from preQiéus
iterations. Since the aeromedical evacuation problem needs
to be solved freéuently and quickiy, an iteration 1limit must
be set. If the aircraft-airport assignments are repeated
and the algorithm is not terminated, the algorithm would be
in an infinite loop. '

If any aircraft is not loaded to capacity, the algo-
rithm proceeds to step'é."'At Step 4 the patient-aircraft
'assignﬁents (new_Ajk) are updated and they are passed to the
aircraft-airport assignment problem. Step 4 readjusts the
aircraft loads for input into the aircraft-airport assign-
ment problem. This step essentially reloads each aircraft
80 that the total patient wait time is minimized for the

current aircraft-airport aséignments. The aigorithm then
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proceeds to Step 1 with the new values for the Ajk parame-
ter, and the aircraft-airport assignment problem is‘re-

- optimized based on the new distribution of aircraft loads.
At Sfep 1, the goal is to pick a new set of airports to
assign the aircraft to. The algorithm proceedé as described

above until one of the termination criteria is met.

4.4 Algorithm Testing.

The algorithm was initially tested using three separate
data sets which represented realistic patient loads based on
historical percentages. A subset of 13 airports was select-
 ed which would exercise the algorithm. The remaining air-
ports were not considered by the aircraft-airport assiénment
problem. The subset of airports is listed in Appendix E.
The subset was psed to keep the number of binary variables
at a manageable level (approximétely 130) and to keep compu-
tational time reasonable. Several of the airports selected
did not have a capacity to handle certain categories of
patients, most notably the burn and spinal categories. The
number of patients by category for FCFS is assumed to follow
the historical percentages listed previously in Chapter 1.
Initially, all of the aircraft will be loaded with the same
number and same type of patients. Since the assuméd air-
craft capacity is 100 for each type of aircraft, the patient

load per aircraft is as follows:
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Table 6

Initial Patient Load

Patient Category Number
General Medical 13
Psychological 3
Surgical 44
Orthopedic 36
Burn

I Spinal

- since the FCFS load would have some of these category pa-

tients on board each aircraft, there would be a non-zero

objective function value in the aircraft-airport assignment

in the first iteration. At Step 2, the patient-airéraft

assignﬁent problem flow would

then reassign patiénts based

on the capacities of the airports selected. 1if necessary,

other iterations of the algorithm would be performed until

all patients were assigned to

an available bed. The initiai

number of patients for the three data sets are listed in the

following table:
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Table 7

Patient Data S8et Distribution

Category S8et 1 | 8et 2 Set 3
Gen Medical 130 130 143
E Psychological 30 30 33
H Surgical 440 440 484
I orthopedic 360 360 396
| Burn 30 20 33
Spinal 10 20 11

The first test of the algorithm was perforﬁed'using
data set 1. There were 1000 patients which were all gener-
ated at time 0. There were 10 aircraft whose atrival times
were spaced out evenly at 0.1 day intervals throughout the
day. The pehalty for an assigﬁment of a patient to the
dummy aircraft in the patient-aircraft assignment problam
was set to 100. This value is much greater than the plan-
ning horizon (1 in this data set). The results of the'

- alrcraft-airport assignment problem for data set 1 are
listed in Appendix F. The results are summarized in the

following table:
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Table 8
Testing of Data Set 1

Capacities Violated | Patients Assigned | wait
at 8tep 1 to Dummy AC (8tep2)

The results indicate that, on th first iteration, 19 pa-
tients have violated the hospitaI capacity constraints. The
airport assignments were input f the patient-aircraft
assignment and the patients wereireassigned to minimize
their wait times. This resulted%in a new assignmeht of
patients to aircraft which was different than the assign-
"ments in the initialization step. 1In the patient-aircraft
assignment problem, the numk-r of patiehts violating hospi-
tal capacity constraints was red?ced from 19 to 4 as indi-
cated by the aSsignment of four burn patients to the dummy
‘aircraft. The total wait time was 846.4 days of which 400
days were due to the patients assigned to the dummy air-
craft. The first nine aircraft were loaded to capacity and
the average wait time for the assigned patients was 0.448
days per pétient. The aircraft loading was chénged dramati-
cally and is listed in Appendix F. The new aircraft loading

was input to the aircraft-airport assignment problem. The
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‘results indicate that the objective value remained at four,

but a different assignment of aircraft to éirports was made. .

Inputting the results into the patient-aircraft assignment

problem reduced the number of patients violating hospital‘

capacity constraints to one. The total wait time was 549.1

days, of which 100 days were due to a single patient as-

signed to the dummy aircraft. The first nine aircraft were

~_once again loazded to capacity and the average wait time was

0.449 days per assigned patient. The reason the average

wait time went up is that three more patients were assigned

to the aircraft with the latest ar:ival time. Once again

the aircraft loads were changed and a third aircraft-airport

assignment problem was solved. The objective value remained

at one, but a new assignmgnt of airc:aft to airport assign-

ments was made. These new assignments were input into the

patient-airport assignment problem and the result was that

all patients were assigned to Boeing 767 aircraft. The wait

time was 450 days, for an average of 0.45 days per patient.
"The 0.45 days per patient is consistent for the data set,
since the average arrival time for the aircraft was 0.45
days. | B

Three complete iterations were performed by the algo-
rithm and at each step the numbér of patients violating
hospital capacity constraints either was redﬁced or stayed

the same.
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The second data set required only one complete itera-
tion of the algorithm. There were 1000 patients in data set
2, but in a different distribution of injury types than in
data set 1. The arrival of aircraft remained the samé as
data set 1. In the ipitial aircraft-airport assignment
problem, 18 éatients violat>d airport capacity constraints.
However, when the assignments of aircraft to airports were
input into the patient-aircraft assignment problen, fhe air-
craft loads were readjusted and no patient wés assigned to
the‘dummy aircraft. Once again the total wait time was 450
days, for an éverage per patient of 0.45 days. The fesults
of the iteration are liéted in Appendix G. The results of
data Sets 2 and 3 are summarized in the following table.
The DAC Asmts column is the assignment of patients to the

dummy aircraft.
Table 9

Violated Capacities for Data Sets 2 and 3

| oac asnts | waie

The third data set jinvolved generating and scheduling
patients over a two déy period. There were 100 patients
remaining from the previous day, which simulates that there

' was an insufficient number of aircraft to evacuate all the
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patients on the previousvday. It was assumed that the
distribution of patients remaining overnight followed the
historical distribution. The aircraft schedule remains
unchanged from the two previous test cases. On the second
day, 1000 patients were generated and the distribution of
patients was identicalrto that of data set 1. The purpose
of designing this data set is to determine if the algorithm
would transport patientsAin the order they are generated.
in other words, patients‘generated on the first day should
be evacuated before the patients generated on ‘the second
day.

| In the initialization step, each of the 10 aircraft was
assigned 110 patients. Exceeding the capacity of each
aircraft is acceptable in the airport-aircraft assignment
subproblem. The important factor is obtaining optimal air-
craft-airport assignments. Exceeding the capacity of the
aircraft is not important. The number and distribution of

patients is the information that the aircraft-airport as-

"signment problem needs in order to optimally solve the

problem.

The results of the iteration are listed in Appendix H.
The objective function value indicated that 27 patients had
violated airport capacity constraints. However, since the
total capacity of the 10 aircraft is 1000, in the patient-

aircraft assignment problem there will be at least 100
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patients that will be assigned to the dummy aircraft. The
airport assignments were passed to the patient-aircraft
_aésignment problem and the patient-aircraft problem was
solved. The results indicated that 100 patients were as-
signed to the.dummy.aircraft. This indicated that the 10
actual‘Boeing 767 aircraft were filled to capacity. Of the
100 patienfs assigned to the dummy aircraft, 81 patients
were firom the orthopedic category and 19.were from the burn
category. All of these 100 patients were genérated on the
second day. The total wait time was 10,463 days, of which
10,000 waé from the pafiehts assigned to the dummy aircraft.
- The average wait time for the patients not assigned to the
dumrmy aircraft was 0.463 days. The reascn that the average
wait time went up to 0.463 days from 0.45 days is that the
wait time for all of the 100 patients from thé first day is
greater than one day. The significance of this iteration is
that patients would be airlifted as soon as an aircraft was
'available, and patients would not be left for an extended

period of time waiting to be airlifted.

4.5 Analysis of Results.

The results of the testing of the Aeromedical Evacua-
tion Heuristic Algorithm indicated that the method developed
can be used by medical regﬁlators to determine who goes o

what aircraft and where to send the aircraft. This method
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could be used whether the present hub and spoke systenm is
maintained or if an alternative syster: such as direct deliv-
_ ery is implemented. The method can reduce the amount of |
stateside redistributic.a of patient., saving valuable re-
sources. There are several considerations that merit dis-
cussion.

While the method did work within several iterations on
the tested data seﬁs, it does not guarantee an optimdl
.solution will be obtained'in all cases. Obviously, if there
are more patients than there are avaiiable hospital beds,
aeromedical evacuation of all patients would be impossible.
It is possible that the solution to the aircraft-airport
assignﬁent problem will be a set of airports in vhich there
will be some patients violating capacity constraints. The
patient-aircraft assignment program may readjust the air-
craft loads and péss those along for input into the air-
craft-airport assignment problem. It is possible that the
aircraft-airport assignment program may then pick the same
subset of airports as the previous iteration. The algbrithm
guarantees that the solution between steps of the algorithm
will not get worse. However, the algorithm does hot Quaran-
tee the next solution will get better. Also, there does not
appear to be a bound on how close to optimality the currént

solution is.
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. There are seberal‘options that the regulator can.choose

from if this situation occurs. The first is that they may
pick a new group of airports (different from the initial

set) for the aircraft-airport assignment program to consider

)

- and start the process over again. The seéond option is that
the regulator may chodse to not‘fully load an aircraft. The o
third and final option is for the regulato: to reassigh the o
aircraft to an airport with redistribution‘capability.
Another concern is the computational time required when
executing the algorithm.. Since the first subproblem is an'
IP, the computationai time required to solve the problem ;\
cannot be iqnored.' The computationalﬁtimes for the IP using | : -
the GAMS/ZOOM solver varied from a few seconds‘to.three
hours. The problem had 130 binary vafiables,-297 continuous
variables and 90 constrcints. The GAMS/iOOM‘solver uses a

combination Linear Program, Pivot and Complement heuristic,

and Branch and Bound procedure. It first solves a relaxed o (;,
LP to get a lower bound. It then uses the Pivot and Comple- /
ment heuristic to come up with an integer answer. If the "L"

hguristic fails to come up with the optimal solution,

éAkS/zoou will then use Branch and Bound (7:226-227) . in
problems that took a long time to solve, the solver was §¥§
searching nodes of the branch and bound tree to reach the ‘

optimal answer. Doing branch and bound generally takes far
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longer than the initial LP and the Pivot and Complement

heuristic combined (7:227).

The third concern is the amount of time required for
inputting the data. The implementation of this algorithm
used two completely different systems to solve problems
(GAMS and SAS). ‘There is no direct 1ink betweeﬁ the two
systems at AFIT. Therefore, much of the data between itera-
tions had to be manually entered. For the aircraft-airport
assignment problem using GAMS, the Ay parameter had to be
changed between iterations (See Appendix C: TABLE A(J,K) ).
In the patient-aircraft assignment problem using SAS, an |
entire column of the SAS data set must be manually changed’
(See Appendix D: _capac_ column). The time required for
these inputs is not excessive, but their entry would waste
valuable time in an actual wartime environment.

Another possible concern is the side constraints in the
patient-aircraft assignment network probiem. A pure netwoark
problem can be solved using a polynomial time algorithm,
while soiving a problem with side constraints cannot be. It
is theoretically possikle that solving the network with side
constraints might take an excessive length of time. Howev-
er, no problems of this nature were encountered in any of
the SAS runs with side constraints. The computational time

required on all runs was under 30 seconds. A pure network
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was designed which would delete the need for side

constraints. The network is illustrated in Figﬁre 4.

GM1 —2{GMA1 .
1 S ACT.
3 4
1 2
P1 PA1 (a0
3 ////
1 ac2y 4

\31 2 SA1 3

Pigure 4: Modified Network

Iniﬁially, the network is identical to the network used"

in the research. There are three arcs emanating from the

~source (S) which travel to injury category nodes (Figure 4:

GM1, P1, S1). The cost‘and capacities are the same as the

original network used in the research. However, this is

where the similarity ends. From each injury category node
there are arcs travelling to injury category nodes for each
airport (GMA1, PAl, SAl). There are six injufy category
nodes for each airport. The capacity of the arcs (labeled 2

in Figure 4) is the injury category capacity of the airport
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to which the aircratt (or multiple aircraft) has been as-
signed. The cost is the wait time of the patients in that
category. This is the modification to the network that was
made éo that the side constraints can be deleted. From
these nodes, there are arcs travelling to aircraft nodeé
(Figure 4: Ac1,’Ac2); The cost along these arcs iSIZero, L;
and the capacity is the airport’s capacity for that injury | ' /
category. From each aircraft node, a single arc travels to .
an airport node (Figure 4: APl1l). The cost along this arc is
.2zero and the capacity is the capacity of a Boeing 767; 100.
From the airport nnde a single arc travéls to the sink node;
The cost along the arc is zero and the capacity is the total
capacity of the airport (all categories combined). The size
of the network might be a concern. The network as formu-
lated this way is approximately 4 times larger than the
present network; The number of nodes increases from 58 in
the nc¢twork that was used in‘the research to 319 in the
proposed network and the number of arcs increases from 245
to 831. It is larger because each aircraft requires six
injury category nodes, whereas the smaller network requires
six injury category nodes for all aircraft ragardless of

destination.

63




5. CONCLUSIONS AND RECOMMENDATIONS

The purpose of this chapter is to summarize the re-
search effort, to discuss the major conclusions, and to

prcride recommendations for further research.

5.1 Summary and Conclusions

This thesis effort exarined the aeromedical evacuation
‘process and provided a methdd of scheduling patients on and
routing CRAF Boeing 767 aircraft. Presently, the Boeing 767
travel from COMMZ evacuation airports to major hubs in the
CONUS. At the major hubs, the patienﬁs are unloaded off the
Boeing 767 and loaded onto C-130 aircraft which then trans-
port the patients from the hubs to the airport nearest the
patient's assigned hospital bed. This research has examined
and presented a methéd to schedule patients on specific
Boeing 767 aircraft and then route the aircraft to a single
CONUS airport. This method of scheduling and routing can be
implemented within the present system‘or it can be used in
alternative systems such as a direct delivery systenm.

The aeromedical evacuation problem that was studied had
the objective of minimizing patient wait time in the theater
ofbconflict. By minimizing the wait time, the patients
would benefit from the improved medical care that is avail-

able at the CONUS hospital.' The problem was modeled as a
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mixed integer program (MIP). Tﬁe problem had two primary
assignment variables: assigning aircraft to airports and
assigning patients to aircraft. The problem was_constrained
by two capacities. Aircraft capacity is the capacity éf'a
Boeing 767. Airport capacity was defined to be the number
of patients in each injury category that could be served by
the hospitals served by that airport.

A small problem was formulated, solved, and aﬁ analysis
was performed on the structﬁre of the problem. The analysis
revealed that the number of binéry variables required to
formulate a realistic problem was too large to be solved
efficiéntly. Since the aeromedical evacuation heeds to be
solved quickly and frequently, a heuristic procedure was

developed.

The heuristic procedure divided the problem into two
subproblems. The first step was to initially load aircraft
with'patients on a first come first serve basis. The first
subproblem that was solved was the assignment of aircraft to
airports. This assignment problem was solved by integer
programming using techniques borrowed from goal programming.
Deviational variables Jere used tc minimize the number of
patients travelling to Ln airport whose surrounding hospi-
tals could not suppoft hem. The results of the IP were a

set of aircraft-airport assignments. These assignments and
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their associated cépacities were fhen passed to the second
subproblemn. |

| The second subproblem was the patient to aircraft
assignment problem. 1In the original probiem formulation,
the vast majority of the binary variables used to formulate
the probiem werevin this'assignmentQ Network flcw program-
ming'was used in order be more efficient in the solution
process. If all of the aircraft were loaded to capacity,
meaning that the airport capacity constraints were not
violated, the algorithm was terminated. The algorithim was
terminated because optimal assignmeﬁts of both subproblems
have been reached. If not, the new‘patient-aircraft assign-
ments were passed to the aircraft-airport assignment
subproblem. The algorithm proceeded in this manner until.
one of the termination criteria was met.

The algorithm was tested using three different but
realistic data sets. The results indicate that this method
of scheduling patients and routing aircraft was feasible.
This method could be used in the present hub and spoke
system and in alternative systems. In the testing of the
first data set, three iterations of the algorithm were per-
formed before no airport capacities were violated. The

remaining two data sets required only one iteration of the

algorithm.
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5.2 Recommendations‘fbr Further Study
} In conducting the research, five areaé were uncovered
upon which further study and research could be performed. |

The first area is to put the algorithm in a dynamic
environment. The development and testing of the élgorithm
was done in a static environment. By placing the algorithm
into a dynamic test environment, one would be able to deter-
mine the effects that the routing and scheduling algorithm
has upon patient flow, aircraft fldw, and hospital capaci-
ties. One possibility is to incorporate the méthod into
Charles Wolfe's SIMSCRIPT simulation model developed in his
AFIT thesis titled "The Use of Simulation to Evaluate Stra-
tegic Aeromedical Evacuation Policy and Planning" (21).

The second recommendatioﬁ is to test the impact of the
length of the planning horizon upon this method of patient
scheduling and aircraft routing. In the model used in this
research, the number and type of patients left unassigned
had no effect on the next days decision process. The plan-
ning horizon's length may have an effect on what type and
how many patients are not assigned to an aircraft. The
planning horizon's length may also have an effect on the
penalty applied to the dummy aircraft in both the small
aeromedical evacuation problem and to the patient-aircraft

network assignment problem.
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The third recommendation is to study and implement the
pure network formulation of the patienﬁ-aircraft assignment
problem. The solution time to the problem as formulated
using side constraints could prove to be excessive. wOﬁld
the pure network, which is four times la:ger than the pres-
- ent network, solve in é shorter time than the present net-

work with side constrainté?

The fourth recommendation is to investigate more effi- 
cient methods to solve the aircraft-airport assignment prob-
lenm. the solution time of thevpfesent IP formulation can be
excessive giﬁen‘the dynamic nature §f the wartime aero-
medical evacuation process. One possible method would bé»to
formulate the aircraft-airport assignment as a network
problem which would reduce the computational time required.
to solve the problen. o

The fifth anﬁ final recommendatibn is to.ihtegrate.the
algorithm's two main subproblems into.oné programming lan-
guage. This would decrease the manual inputs required. As
a goal, the algorithm should be totally automated so thev
problem could be solved quickly and efficiently. The pres-
ent algorithm uses two different languages (GAMS and SAS),
which are incompatible. Such an implementatiun would be

necessary for this approach to be acceptable as an efficient

planning tool.
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Appendix A:

AIRPORT
LOS ANGELES 4704

TUSCOM 169
LUKE - an

SAN FRAN 897
FTLEWIS 473
PORTLAND 213
BOSTON 3593
NHAMPTON 233
ALBANY 130
CHARLOTTE 527
FT JACKSON 420
FT GORDON 274
FT BRAGG 1621
CHARLESTON 212
DENVER 603
HILL 171

WICHITA 52

ALBQ 118
FTBLISS 603
PHIL 4209
SYRACUSE 219
BUFFALO 813
PITTSBURG 1368
NORFOLK 1201
WASH DC 1604
HOUSTON 1211
NEW ORLEANS 2323
LITTLE ROCK 80

SHREVEPORT 229
OK CITY 227
CARSWELL 883

SAN ANTONIO 1150

1343
68
110

421
180
64

303
6
104

344
110
212
533
78

180
72
30
27
115

1288
128
110
516
248

10
101

147

3327
o
472

1481

1061
1403

1205
1271

108

GEN MED PYSCK SURG - ORTH

1102
35
a7

358
264
81

7M1
325

120
174
138

69

567
9
21

117

8

15

97
4
1

41
24
29

ol-ocogdnm

BoosroNR B3

Hospital Capacities ‘

BURN
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Appendix A: Hospital Capacities

AIRPORT GENMED PYSCH SURG ORTH SPIN BURN
ATLANTA 708 84 4687 309 3 35
BIRMINGHAM 514 [4) 487 58 12 9
ORLANDO - 875 154 702 201 57 §0
JACKSONVILLE - 456 193 383 355 54 s7
JACKSON 336 168 3. 1 16 8
MILLINGTON 427 160 248 59 25 4
KNOXVILLE 206 57 209 64 9 1
NASHVILLE 468 199 490 161 13 5
CHICAGO 2204 568 2651 547 68 85
CLEVELAND 344 197 287 103 41 33
MINNEAPOLIS 88 148 338 £ 27 11
DES MOINES 65 27 84 12 4 3
- INDIANAPOLIS 250 7 84 33 8 3
8COTT 665 130 1218 278 0 0
LEAVENWORTH 222 78 382 84 24 6
LEXINGTON 261 92 395 192 5 1
ALLEN PARK 592 154 514 130 29 26
OFFUT 583 104 126 178 14 16
WRIGHT-PATT ~ 5§37 156 880 318 120 96
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Appendix B: Aeromedical Problem Formulation and Solution

FORMULATION:

MIN 4 X1E + 6 X1F + 3 X2E + 5 X2F + 2 X3E + 4 X3F +
X4E + 3 X4F + 0.5 XSE + 2.5 XS5F + 2 X6F +
'1.5 X7F + X8F + X9F + 0.5 X10F + 10 X1D + 10 X2D +
10 X3D + 10 X4D + 10 XSD + 10 X6D + 10 X7D +
10 X8D+ 10 X9D + 10 X10D ‘
SUBJECT TO:
2) X1E + X1F + X1D = 1
3) X2E + X2F + X2D = 1
4) X3E + X3F + X3D = 1
5) X4E + X4F + X4D = 1
6) XSE + X5F + X5D = 1
7) X6F + X6D + X6E = 1
8) XJF + XD =
9)  X8F + X8D
10)  X9F + X9D

11) X10F + X10D
12) YEG + YEH
13) YFG + YFH
14) X1E + X2E + X3E + X4E + X5E + X6E <= 5
15) X1F + X2F + X3F + X4F + X5F + X6F+

X7F + X8F + X9F + X10F <= 4
16) Z1EG + Z3EG + Z4EG + Z6EG 21FG +

Z3FG + Z4FG + Z6FG + Z9FG Z10FG <= 3
17) Z2EG + Z5EG + Z2FG + Z5FG Z7FG + Z8FG <= 1
18) Z1EH + Z3EH + Z4EH + 2Z6EH Z1FH +

Z23FH + ZAFH + Z6FH + Z9FH Z10FH <= 3 :
19) Z2EH + Z5EH + Z2FH + 2Z5FH + 27FH + Z8FH <= 4

Ty Y PR yW

+4+ 4+ 4+

20) X1E + YEG - Z1EG <= 1
21) X2E + YEG - 22EG <= 1
22) X3E + YEG - 23EG <= 1
23) X4E + YEG -~ 24EG <= 1
24) XSE + YEG - 25EG <= 1
25) YEG + X6E - 2€EG <= 1
26) X1E + YEH = Z1EH <= 1
27) X2E + YEH - 22EH <= 1
28) X3E + YEH - 23EH <= 1
29) X4E + YEH - 24EH <= 1
30) XS5E + YEH - 25EH <= 1
31) YEH + X6E - 26EH <= 1
32) X1F + YFG - Z1FG <= 1
33) X2F + YFG - 22FG <= 1
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34)
35)
36)
37)
- 38)
39)
40)
41)
42)
43)
44)
45)
46)
' 47)
48)
49)
50)
51)
END
INTEGER
INTEGER

" INTEGER

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

- INTEGER

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

INTEGER

X3F
X4F
XSF

. X6F
X7F

X8F
X9F

X10F + YFG - Z10F

X1F
X2F

- X3F

X4F
XSF
X6F
X7F
X8F
X9F

+++++++

++++ o+

YFG
YFG
YFG
YFG
YFG
YFG
YFG

YFH
YFH
YFH
YFH
YFH
YFH
YFH
YFH
YFH

Z3FG
Z4FG
Z25FG
Z26FG
Z7FG
Z28FG
Z9FG

- Z21FH
- 22FH

= Z3FH

- 44FH
= Z5FH
= Z6FH
Z7FH
Z28FH
Z9FH

QAAAAAAA

AAAA

AAAANA
A
]

X10F + YFH - Z10FH <=

X1E -

X1F
X2E
X2F
X3E
X3F
X4E
X4F
XSE
XSF
X6E
X6F
X7F
X8F
X9F
X10F
X1D
X2D
X3D
X4D
XsD
X6D
X7D
X8D
X9D
X10D
YEG
YEH
YFG
YFH
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NDO SOLUTION:

OBJECTIVE FUNCTION VALUE

1) 25.0006000

VARIABLE VALUE REDUCED COST
X1E 1.000000 4.000000
X1F . 000000 6.000000
X2E 1.000000 3.000000
X2F .000000 5.000000
X3E . 000000 2.000000
X3F 1.000000 4.000000
X4E 1.000000 1.000000
X4F .000000 3.000000
X5E 1.000000 " +500000
XSF . 000000 2.500000
X6E 1.000000 .000000
X6F .000000 2.000600
X7F . 000000 1.500000
XeF 1.000000 1.000000
X9F 1.000000 1.000000
X10F 1.000000 500000
X1D .000000 10.000000
X2D 000000 10.000000
X3D .000000 10.000000
X4D . 000000 10.000000
X5D .060000 10.000000
X6 .000000 10.000000
X7D 1.000000 1v. 000000
X8D .000000 10.000000
X9D + 000000 10.000000
X10D .0000G0 10.000000
YEG . 000000 . 000000
YEH 1.000000 . 000000
YFG 1.000000 . 000000
YFH .000000 .000000
Z1EG . 000000 . 000000
Z3EG .000000 . 000000
Z4EG . 000000 .000000
Z6EG .000000 .000000
Z1FG . 000000 . 000000
Z3FG 1.000000 .000000
Z4FG . 000000 .000000
Z6FG . 000000 .000000
29FG 1.000000 . 000000
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Z10FG
Z2EG
Z5EG
22FG
Z5FG
27FG -
Z8FG
Z1EH
Z23EH
Z4EH
Z6EH
Z1FH
Z3FH
Z4FH
Z6FH
Z9FH

Z10FH
Z2EH
Z5EH
Z2FH
Z5FH
Z7FH
Z28FH

NO. ITERATIONS=

1.000000
.000000
.000000
.000000
.000000
.000000

1.000000

1.000000°

.000000
1.000000
1.000000
.000000
.000000
.000000
.000000
.000000
000000
1.000000
1.000000
.000000
000000
.000000
000000

128

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000°
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
000000
.000000
- .000000
.000000
.000000
.000000
.000000

BRANCHES= 1 DETERM.= 1.000E 0
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Appendix C: GAMS Integer Program N
SETS : !
J aircraft /Al1,A2,A3,A4,A5,A6,A7,A8,A9,A20/
H = hubs /CIND, CLEX, CSCO, AR
AKNX, ‘ S
HLRF, HOKC, HSHR, HCRS, , ,
CHCHS, , o
DABQ, DWIT, E
BALB, BNRH/ |
K categories /GM, PYS, SUR, ORTH, SP, BUR/; e
. | | w
TABLE CAPAC(H,K) capacities of hubs by ca‘tegories s
: GM PYS SUR ORTH SP S
CIND 250 77 84 33 | 8 3 i
CLEX 261 92 395 192 3 1 oy
CSsco 665 130 1216 276, 0 (] S
AKNX 206 57 209 64 | 9 1
HLRF 80 10 83 86 | 0 0 i
HOKC 227 52 422 120 1 0 I
HSHR 229 101 106 32 0 4 g
HCRS , 683 147 502 174 52 0 A
CHCHS 212 78 277 62 -3 12 L
DABQ 118 27 123 36 0 5 L
! DWIT 52 30 46 42 0 1 N
| BALB 180 104 181 103 1 1 3
‘ BNRH 233 6 132 66 4 5 B
i =
. i ) v b
TABLE A(J,K) load per aircraft of citegory k patients ' > y
M PYS SUR ORTH  SP /o
BUR \ » Nt
Al 13 3 44 36 1 3 !
A2 13 3 44 36 1 3 :
A3 13 3 44 36 1 3 e
A4 13 3 44 36 1 3 s
AS 13 3 44 36 1 3
A6 13 3 44 36 1 3 s
a7 13 3 44 36 1 3 >
A8 13 3 44 36 1 3 S
A9 13 3 44 36 1 3 s
A10 13 3 44 36 1 3 T/
H -i‘l_,
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SCALARS NOA number of aircraft in model /10/
SRH right hand side value - J1/;

. VARIABLES
Y(J,H) assignment of plane j to hub h

SPLUS(H,K) surplus variable
EXCS(H,K) excess variable K
OPT optimal solution value;

POSITIVE VARIABLES SPLUS, EXCS;

BINARY VARIABLE Y;

EQUATIONS .
ASSN objective function
EHP(H,K) hospital capacity equations
EMNA maximum number of aircraft

EHTA (J) one hub to an aircraft;

ASSN .. OPT =E= SUM((H,K),EXCS(H,K)); .

EHP(H,K) .. SUM(J,A(J,K)*Y(J,H)) + SPLUS(H,K) - EXCS(H,K)
, =E= CAPAC(H,K); ,

EMNA .. SUM((J,H),¥(J,H)) =E= NOA;

EHTA(J) .. SUM(H,Y(J,H)) =E= SRH;

MODEI. HUBASSIGN /ALL/;

OPTION OPTCR = 0.1;
OPTION LIMROW = 0;

- OPTION LIMCOL = O;

OPTION ITERLIM = 900000;

OPTION RESLIM = 10000;

- OPTION WORK = 100000;

SOLVE HUBASSIGN USING MIP MINIMIZING OPT;
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Appendix D: SAS Network Code

title 'Patients to Aircraft: Hubs Already Selected';

title3 'Nodes for Natwork';
: data noded;
input node_ $ _sd_;
cards;
S 1100
T -1100

.
’

title3 'Arc Data‘';
data arcd;
input _from_$ _to_ $ _cost_ _capac_ _lo_ _hame_ $;

cards;

] GMO 0 13 . SGMO
] PO O 3 . SPO
] SO o 44 . SSO
S 00 O 36 . S00
s BO 0 3 . SBO
S SPO 0 1 . SSPO
S GHM1 O 130 . sGil
s P1 O 30 . SP1
S S1 O 440 , SS1
] 01 O 360 . SoO1
s Bl O 30 . SB1
S SP1 0 10 . SSP1
GMO Al1l1 1 250 . GoOA1l
GMO Al12 1.1 212 . GOA2
GMO Al13 1.2 118 . GOA3
GMO Al14 1.3 261 . GOA4
GMO Al5 1.4 683 . GOAS
GMO Al6 1.5 206 . GOA6
GMO Al7 1.6 665 ., GOA7
GMO A18 1.7 233, « GOAS
GMO Al9 1.8 683 ., GOA9
GMO Al0 1.9 180 . GOAO
GMO DAC 101 5000 . GODAC
GM1 Al11 O 250 . Gia1l
GM1 Al12 0.1 212 . Gi1A2
GM1 Al3 0.2 118 . G1A3
GM1l Al4 0.3 161 . G1A4
GM1 Al15 0.4 683 . G1AS
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GM1 Al16 0.5 206 . G1lA6
GM1 Al7 0.6 665 . G1A7
GM1 Al18 0.7 233 . G1A8
GM1 A19 0.8 683 . G1A9 _ S
GMi A10 0.9 180 . G1AO - S
GM1 DAC 100 5000 . G1DAC o
PO Al11 0 77 . POAl . - ‘ _ PR
PO Al2 0.1 78 . POA2 _ ;
PO Al13 0.2 27 . POA3 , :
PO Al4 0.3 92 . POA4 : LT
PO Al5 0.4 147 . POAS o - -
PO Al16 0.5 57 . POA6 _ :
PO Al17 0.6 130 . POA7 , : o
PO Al8 0.7 6 . POAS .
PO Al19 0.8 147 . POA9
PO Al1l0 0.9 104 . POAO /
PO DAC 100 5000 . PODAC :
. /

P1 A11 0 77 . PlA1l : . L
P1 Al2 0.2 78 . P1A2 _ N
P1 A13 0.2 27 . P1A3 : ",
P1 Al4 0.3 92 . P1A4
P1 Al15 0.4 147 . P1AS
P1 Al16 0.5 57 . P1A6 ' : !
P1 Al17 0.6 130 . P1A7 \ N
P1 Al18 0.7 6 . P1AS8 , O
P1 A19 0.8 147 . P1A9 \ ~
P1 Al0 0.9 104 . P1A0O - e
P1 DAC 100 5000 . P1DAC \ . , e
SO A11 0 84 . SOAl
SO0 Al12 0.1 277 . SOA2 : ;
SO Al13 0.2 123 . SOA3 : P
SO Al4 0.3 395 . SOA4 -
SO Al1l5 0.4 502 . SOAS ' L : : : e L
S0 Al6 0.5 209 . SOA6 . _,1/4
SO Al1l7 0.6 1216 . SOA7 :
SO Al18 0.7 132 . SOAS
SO A19 0.8 502 . SOA9
SO Al10 0.9 181 . SOAO
SO DAC 100 5000 . SODAC
S1 A11 0 84 . SiAl '
S1 Al1l2 0.1 277 . S1A2
S1 a13 0.2 123 . S1A3
S1 Al4 0.3 395 . S1Ad
S1 Al15 0.4 502 . S1AS
S1 Al16 0.5 209 . S1A6

0.6 1216 . S1A7

S1 A1l17
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S1
Ss1
S1
S1

Al8
Al9
Al0
DAC

All
Al2
al3
Al4
Al5
Al6
Al7
Al8
Al9

-Al0

DAC

All
Al2
Al3
Al4
Al5
Alé
Al7
Als
A1l9
Al0
DAC

All
Al2
Al3
Al4
Al5
Al6
Al7
Al8
Al9
Al0
DAC

All
Al2
Al3
Al4
AlS5

. Al6

Al7
Al8

132
502

181
5000

33
62
36
192
174
64
276
66
174
103

5000

32
62
36
192
174
64
276

174
103

5000

W
'

HOUOKORWM

N

VOoOrROHUVIMW ot

o

(=]

(=]

® ¢ 2 o ¢ s 2 s s e o

S1A8
S1A9
S1A0
S1DAC

00A1
COA2
O0A3
00a4
00AS5
Q0A6
Q0A7
00A8
00A9
O0A0
OODAC

01Aa1
01a2
O1A3
01A4
O1A5
01A6
01A7
O1A8
01A9
01a0
01DAC

BOAl
BOA2
BOA3
BOA4
BOAS
BOA6
BOA7
BOAS
BOAS
BOAO
BODAC

B1A1l
BlA2
B1A3
B1lA4
B1AS
BlA6
B1A7
B1AS8




Bl Al19 0.8 0
Bl A10 0.9 1

SPO
SPO
SPO
SPO
SPO
SPO
SPO
SPO
SPO
SPO
SPO

SP1
'SP1
SP1
sp1
spP1
SP1

All
Al2
Al3
Al4
Al5
Ale
Al?7
Al8
Al9
Al0
DAC

All

(=N =}
)
N O
o wm
[ V]

(=N =]
e o

o
*®
RO CVvVRNOULLW

o

CYVONOON LW

NOoOwWwm =& O0Vv
L o N
o
o

HOOoOOWM
~

5000

100
100
100
100
100
100
100
100
100
100
1000

100
100
100
100
100
100
100

. B1A9
. B1lAO
Bl DAC 100 5000 . B1DAC

L ] . L] L] L] . L] L] L] L] L

SPOA1
SPOA2
SPOA3
SPOA4
SPOAS
SPOA6
SPOA7
SPOAS
SPOA9
SPOAO
SPODAC

SP1A1
SP1A2
SP1A3
SP1A4
SP1AS
SP1A6
SP1A7
SP1A8
SP1A9
SP1A0

SP1DAC

AlH1
A2H2
A3H3|
AdH4'

" ASHS

A6H6
A7H7
A8HS8
A9H9
Al0H10 -
DACDHB

H1T
H2T
H3T
H4T
H5T
H6T
H7T
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H8 T 0 100 . H8T
H9 T 0 100 . HST
Hi0o T 0 100 . H1lO0T
DHB T 0 1000 . DHBT

’

- title3 'Side Constraints!';

data condl;
input GOA5 GOA9 G1lAS5 G1A9 POA5 POAS P1AS5 P1A9 SOAS5 SOA9 S1AS
S1A9 OOA5 OOA9 OlAS O1A9 BOAS BOA9 B1AS5 B1lA9 SPOAS SPOA9
SP1A5 SP1A9 _type_ $ _rhs_;

cards;

1111 . . ¢ ¢ ¢ o o« o o o o s s o o 29 s o » LE 683
L] L ] L ] [ ] 1 1 1 1 L] L] L] L] [ ] L] L ] L] . L ] L ] L] [ ] * L ] [ ] LE 147
e o o o s o o 1111 ... e 4 ¢ e e « o« o« o LESO2
L ] L] L] * [ e - * L] . L] L ] 1 1 1 1 L] . L] L] * . L] * LE 174
L] * L] [ ] . * * . L ] L] L ] L] L ] L] L] * 1 1 1 1 L[] ‘O [ ] L] LE o

e o o o o 3 o o s s s s s s e s s s s +1111LES2
’

proc netflow
nodedata=noded
arcdata=arcd
condata=condl
conout=solution;

print probleh; _
proc print data=solution;
sum _fcost_;
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Appendix B: Data Set Information

The following airports were used as the population of air-
ports for the aircraft-airport a551gnment problem to consxd—
er in all three data sets:

1. Northhampton 8. Oklahoma City
2. Albany - : 9. Carswell AFB

3. Charleston . 10. Knoxville

4. Wichita ~11. Indianapolis

5. Albuquerque 12. Scott AFB

6. Little Rock 13. Lexington
7. Shreveport : , :

The following aircraft were generated at the following times
on the present day for the first two data sets. The air-
craft for the third data set are identical to the first two,
but generation starts at time 1.0 (time 0 on the second
day) .

E
i
{1
1]

O00O00COO0O0O0OO
* L ] L] L ] [ ) [ ) [ ] L ] * [ ]
VONOANSLWN MO

P ‘
 OVONAMEWN R

The following patients were generated for the numbered data
sets.
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Data Set 1
Patient category Number Time Generated
General Medical 130 ' " 0.0
Psychological 30 0.0
Surgical ‘ 440 0.0
Orthopedic 360 0.0
Burn | 30 . 0.0
Spinal K 10 0.0

Data Set 2
Eg;ienﬁ ga;egorg Number Time Generated
General Medical 130 ' ‘0.0
Psychological 30 0.0
Surgical 440 0.0
Orthopedic 360 0.0
Burn ‘ 20 0.0
Spinal 20 0.0

Data Set 3
Patient Category Number Tinme gehg;ated
General Medical 13 0.0
Psychological 3 0.0
Surgical : 44 0.0
Orthopedic 36 0.0
Burn 3 0.0
Spinal e 1 0.0
General Medical 130 1.0
Psychological 30 1.0
Surgical 440 1.0
Orthopedic 360 1.0
Burn 30 1.0
Spinal 10 1.0
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Appendix P Data Set 1: Iteration 1

GAMS/ZOOM output
Objective function value: 19

Alrcraft Airport Assignment

1. Carswell . S
I 2 Northampton r ‘
n 5‘ Charleston
I 4 Albuquerque
I 5 Wichita
| 6 oklahoma City | o
lﬁ 7 Knoxville ' .
I 8 - Lexington u ?1
[ .9 Albany H o
I 10 Lexington H ‘7 .

SAS Output: New Aircraft Loads (Ayx)
Wait Time: 846.4 days
ORI R

A
Aircraft | ax pYs | surR | orTE | spx | BuURN \
1 59 _0 36 5 ;
2 38 30 31 0 1 g
3 11 0 46 42 0 1 R
4 0 0 0 90 10 0 \,/
5 0 0 100 0l 0 o
6 0 0 99 ol 1 ;
7 0 0 95 0| 5
8 0 0 100 0 0 | 0
9 0 0 99 o | 1 E
10 22 0 0 62 o '] 12 |
f
Dumy J o | o | o | o | o | 4 | ,
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GAMS/ZOO0OM output
Objective function value: 4

 Iteration 2

[ory

Aircraft

Airport Assignment

Northampton

Albany

Wichita

Carswell

Carswell

Shreveport

Albuquerque

Albany

O j® I O OV 1> W N

Lexington

Charleston

-SAS Output:
wait Time:_549.1 days

New Aircraft Loads (Ajk)

. - e T T
Aircraft GM PYS SUR | ORTH | s8PI BURN
1 24 0 4 66 1 5
2 70 30 0 0 0
3 11 0 46 42 0 1
4 0 0 0 91 9 0
5 0 0 100 0 0
6 0 0 96 0 4
| 7 0 0 95 0 5
| 8 0 0 99 0 1
9 0 0 99 0 1
10 25 0 62 0 12
Dummy 0 0 0 0 1
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ol

e

Iteration 3

GAMS/ZOOM output
Objective function value: 1

v E— o —
|__atrorare | adrport assigument
e e (

Northampton :

Lexington

Wichita

Carswell

Nofthampton

Shreveport

Albuquerque

Knoxville

Vo g o juje |w v |

Albany

10

Charleston

SAS Output: New Aircraft Loads (Ajk)

Wait Time: 450 days

R Es St B R E——
Aircraft GM PYS 8UR ORTH 8PI BURN
1 17 11 | es 0
2 0 72 27 1
3 |52 0 42 1 |
4 0 19 71 10 o |
5 0 0 95 0 5 |
6 0 0 96 0 s |
| 7 0 0 95 0 s |
k 8 35 0 0 64 0 1 |
9 0 0 0 99 0 1 I '
10 26 0 0 62 0 12 |
Dummy 0 0 0 0 0 0 !
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Appendix G Data set 23 Iteration 1

GAMS/ZOOM output
Objective function value: 1R

Airport Assignmaut

|
i Aircraft

Northampton

Carswell

Knoxville

Northampton

Lexington

Carswvell

Charleston

Lexington

WO N O | JW N (=

Albuquerque

Carsvell

-
(=

SAS Outpnut: New Aircraft Loads (Ayx)
Wait Time: 450 days.

mrcraf t GM l PY8 8UR ORTH 8PI BURN
I 1 22 -0 12 66 0 0
4| 2 43 30 0 16 11 0
I 3 2 0 46 42 9 1
l 4 0 0 95 0 5
I 5 0 0 99 0 1
6 0 0 100 0 0
7 0 o 88 0 12
8 0 .O 0 100 0 0
9 63 0 0 36 0 1
10 0 0 100 0 0
Dummy 0 0 0 0 0
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Appendix H Data Set 3:  Iteration 1

GAMS/ZOOM output

Objective function value:

27 . .
Airpor* 2zsignment
Pt gy _A“.'

Indianapolis

SRS

“harleston

hlbuquerque

Lexingten

Carswell

Knoxville

- Scott

1
2
3
4
5
. 6
7
8

Northhampton

Carsvell

[
(

SAS Output:

Albany _

New Aircraft Loads (Ayy)
wWait Time: 10,463 days.

Aircratt GM PYS SUR ORTH 8PI BURN

1 79 0 0 16 0 s |
2 0 33 66 0 1 |
3 51 0 44 0 5 I
4 0 100 0 0
5 0 62 36 1 o |
6 13 0 11 64 10 2 I
7 0 0 100 0 0 0 I
8 0 0 100 0 0 ] I
9 0 0 100 0 o |
10 0 0 99 0 1 |

Dummy 0 0 0 81 | o 15 |
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